(python2.7.5) IndexError 질문: for문 사용 시 범위 내에 있는 data에 대해 index error가 뜹니다.

조회수 89회

안녕하세요,

다른 사람이 만든 코드를 수정하여 사용하려고 하는데,

for 문을 사용해서 여러 개의 결과를 내고 싶어 for 문을 넣어줬습니다.

하지만, 계속해서 IndexError가 뜹니다.

for문의 인수 q를 상수 0 등으로 바꿔주면 다음 단계의 q에서 error가 뜹니다.

밑은 Error Message입니다.

Traceback (most recent call last):
  File "/home/sea/.local/bin/mbf_plot", line 11, in <module>
    load_entry_point('backtrackbb===0.0.0-tar-zipball', 'console_scripts', 'mbf_plot')()
  File "/home/sea/Programs/backtrackbb-master/backtrackbb-master/backtrackbb/scripts/mbf_plot.py", line 50, in main
    print('Creating characteristic function: %s' % (st[q].stats.station))
  File "/home/sea/Programs/backtrackbb-master/backtrackbb-master/venv_project/lib/python2.7/site-packages/obspy/core/stream.py", line 661, in __getitem__
    return self.traces.__getitem__(index)
IndexError: list index out of range

경로를 따라가서 stream.py의 661 line을 포함하는 함수는

    def __getitem__(self, index):
        """
        __getitem__ method of obspy.Stream objects.

        :return: Trace objects
        """
        if isinstance(index, slice):
            return self.__class__(traces=self.traces.__getitem__(index))
        else:
            return self.traces.__getitem__(index)   #Line 661

입니다.

제가 사용한 코드는

def main():
    line_width = 0.5

    config = configure()
    #---Reading data---------------------------------------------------------
    st_n = read_traces(config)
    if len(st_n) > 2:
        for q in range(0,len(st_n)):
            st = st_n.select(station=config.stations[q])
            st.detrend(type='constant')
            st.detrend(type='linear')
            print(st)
            hos_sigma = config['hos_sigma_' + 'S']
            if config.cut_data:
                st.trim(st[q].stats.starttime + config.cut_start,
                st[q].stats.starttime + config.cut_start + config.cut_delta)

            dt1 = st[0].stats.delta

            init_filter(config)

            #---------------------------MB filtering----------------------------------
            HP2_1, MBkurt_1, Tn2_1, Nb2_1 =\
                MBfilter_CF(st, config.frequencies,
                            config.CN_HP, config.CN_LP,
                            config.filter_norm, config.filter_npoles,
                            var_w=config.win_type,
                            CF_type=config.ch_function,
                            hos_order=config.hos_order,
                            CF_decay_win=config.decay_const,
                            hos_sigma=hos_sigma[config.stations[q]])
            print('Creating characteristic function: %s' % (st[q].stats.station))
            if config.ch_function == 'kurtosis':
                #
                if config.sigma_gauss:
                    sigma_gauss = int(config.sigma_gauss/config.delta)
                else:
                    sigma_gauss = int(config.decay_const/config.delta)
                #
                MBkurt_1max_gauss = GaussConv(np.amax(MBkurt_1, axis=0), sigma_gauss)
                MBkurt_1max = np.amax(MBkurt_1, axis=0)
            elif config.ch_function == 'envelope' or config.ch_function == 'hilbert':
                MBkurt_1max = np.sqrt(np.power(MBkurt_1, 2).mean(axis=0))
            #-------------------------------------------------------------------------

            #-------                  Plotting
            fig = plt.figure(figsize=(18, 10))
            # ax1: original trace
            ax1 = fig.add_axes([0.02, 0.207, 0.47, 0.17])
            # ax2: filtered traces
            ax2 = fig.add_axes([0.02, 0.395, 0.47, 0.6], sharex=ax1)
            # ax3: characteristic functions
            ax3 = fig.add_axes([0.51, 0.395, 0.47, 0.6], sharex=ax1, sharey=ax2)
            # ax4: summary characteristic function
            ax4 = fig.add_axes([0.51, 0.207, 0.47, 0.17], sharex=ax1, sharey=ax1)

            time_array = np.arange(st[q].stats.npts) / st[q].stats.sampling_rate

            ax1.set_ylim(-1, 1)
            ax4.set_ylim(-1, 1)
            ax2.set_xlim(0, max(time_array))
            ax3.set_xlim(0, max(time_array))
            ax2.set_ylim(-1, Nb2_1)
            ax3.set_ylim(-1, Nb2_1)
            ax1.set_xlabel('Time [s]', fontsize=14)
            ax4.set_xlabel('Time [s]', fontsize=14)
            ax1.yaxis.set_visible(False)
            ax2.yaxis.set_visible(False)
            ax3.yaxis.set_visible(False)
            ax2.xaxis.set_visible(False)
            ax3.xaxis.set_visible(False)
            ax4.yaxis.set_visible(False)

            # ax1: original trace:
            st.normalize()
            if len(st) == 2:
                ax1.plot(time_array, st[0].data, 'k', lw=line_width, label=st[0].id)
                ax1.plot(time_array, st[1].data-max(st[0].data), 'b', lw=line_width,
                        label=st[1].id)
            else:
                ax1.plot(time_array, st[q].data, 'k', lw=line_width, label=st[q].id)
            ax1.legend()
            # end ax1

            # ax2, ax3: filtered traces, characteristic functions
            # Normalize to one
            HP2_1 /= np.amax(HP2_1)
            MBkurt_1 /= np.amax(MBkurt_1)

            # Create line objects and add to plot
            traces = [trace + i for i, trace in enumerate(list(HP2_1))]
            lines = LineCollection([list(zip(time_array, trace)) for trace in traces],
                                    linewidth=line_width, color='k', rasterized=True)
            ax2.add_collection(lines)

            traces = [trace + i for i, trace in enumerate(list(MBkurt_1))]
            lines = LineCollection([list(zip(time_array, trace)) for trace in traces],
                                    linewidth=line_width, color='k', rasterized=True)
            ax3.add_collection(lines)

            # Transformations for label positioning
            trans1 = transforms.blended_transform_factory(
                    fig.transFigure, ax2.transData)
            trans2 = transforms.blended_transform_factory(
                    fig.transFigure, ax3.transData)
            inv = fig.transFigure.inverted()
            xtext1 = inv.transform(ax2.transData.transform((time_array[q], 0)))[q]
            xtext2 = inv.transform(ax3.transData.transform((time_array[q], 0)))[q]

            for i, Tn in enumerate(Tn2_1):
                label = '%.2f Hz' % (1./Tn)
                ax2.text(xtext1, i+0.1, label, fontsize=13, transform=trans1,
                        clip_on=True)
                ax3.text(xtext2, i+0.1, label, fontsize=13, transform=trans2,
                        clip_on=True)
            # end ax2, ax3

            # ax4: summary characteristic function
            label = 'MBF sum. ' + config.ch_function
            ax4.plot(time_array, MBkurt_1max/max(MBkurt_1max), 'r', label=label,
                    lw=1.5)
            if config.ch_function == 'kurtosis':
                label = 'MBF sum. gauss'
                ax4.plot(time_array, MBkurt_1max_gauss/max(MBkurt_1max_gauss), 'b',
                        label=label, lw=1.5)

            st.filter('bandpass', freqmin=config.f_min,
                    freqmax=config.f_max, corners=2, zerophase=False)
            st.normalize()
            if len(st) == 2:
                horiz_env = np.sqrt(np.power(st[0].data, 2) +
                                    np.power(st[1].data, 2))
                ax4.plot(time_array, horiz_env, 'k', alpha=0.6, lw=0.5)
            else:
                ax4.plot(time_array, st[q].data, 'k', alpha=0.6, lw=0.5)
            ax4.legend()
            # end ax4
            # -------------------------------------------------------------------------

            # Create out_dir, if it doesn't exist
            if not os.path.exists(config.out_dir):
                os.mkdir(config.out_dir)
            if len(st) == 2:
                name_fig_out = '.'.join(('MBFplot', config.ch_function,
                                         st[0].stats.station, 'horiz',
                                         config.plot_format))
            if len(st) == 1:
                name_fig_out = '.'.join(('MBFplot', config.ch_function,
                                         st[q].stats.station, st[q].stats.channel,
                                         config.plot_format))
            fig.savefig(os.path.join(config.out_dir, name_fig_out),
                                    format=config.plot_format)
            # plt.show()
            # os.read(config.copy_dir)
            print('working')
            #if os.path.exists(config.copy_dir):

            #    if len(st) == 1:
            #        k_st=read_trace(config.copy_dir)
            #        k_st[q].data = MBkurt_1max_gauss/max(MBkurt_1max_gauss)
            print('done 1 file')

입니다.

어떻게 하면 error를 해결할 수 있는지 모르겠습니다.

가르쳐 주시면 감사하겠습니다.

답변을 하려면 로그인이 필요합니다.

Hashcode는 개발자들을 위한 무료 QnA 사이트입니다. 계정을 생성하셔야만 답변을 작성하실 수 있습니다.

(ಠ_ಠ)
(ಠ‿ಠ)

ᕕ( ᐛ )ᕗ
로그인이 필요합니다

Hashcode는 개발자들을 위한 무료 QnA사이트 입니다. 계정을 생성하셔야만 글을 작성하실 수 있습니다.